:py:mod:`gwsnr.ripple.rippleinnerproduct` ========================================= .. py:module:: gwsnr.ripple.rippleinnerproduct Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: gwsnr.ripple.rippleinnerproduct.RippleInnerProduct .. py:class:: RippleInnerProduct(waveform_name='IMRPhenomD', minimum_frequency=20.0, sampling_frequency=2048.0, reference_frequency=None) Class to compute the noise weighted inner product for a given waveform and PSD .. !! processed by numpydoc !! .. py:attribute:: f_u :value: '1024.0' .. py:attribute:: f_ref :value: 'None' .. py:attribute:: f_l :value: '20.0' .. py:attribute:: arg_list :value: "['Mchirp', 'eta', 'a_1', 'a_2', 'luminosity_distance', 'tc', 'phase', 'theta_jn']" .. py:attribute:: gen_hphc .. py:attribute:: vmap_waveform .. py:attribute:: vmap_findchirp_chirptime .. py:method:: arg_selection(waveform_name) Returns the list of arguments required for the chosen waveform. :Parameters: **waveform_name: `str`** The name of the waveform to use. Ripple supported waveforms only. :Returns: list: List of arguments required for the chosen waveform. .. .. !! processed by numpydoc !! .. py:method:: select_waveform(waveform_name) Imports and returns the specified waveform from ripple.waveforms. Parameters: waveform_name (str): The name of the waveform to import. Returns: class: The waveform class from ripple.waveforms. .. !! processed by numpydoc !! .. py:method:: noise_weighted_inner_product_jax(gw_param_dict, psd_list, detector_list, duration=None, duration_min=2, duration_max=128, npool=4, multiprocessing_verbose=True) Compute the noise weighted inner product for a given waveform and PSD. :Parameters: **gw_param_dict: `dict`** Dictionary containing the waveform parameters. The keys should be the parameter names and the values should be numpy arrays. **psd_dict: bilby.gw.detector.PowerSpectralDensity object** Dictionary containing the power spectral density for each detector. **duration: `float` or `numpy.ndarray`** Duration of the waveform. Default is None. It will compute the duration based on the chirp time. **duration_min: `float`** Minimum duration of the waveform. Default is 2s. **duration_max: `float`** Maximum duration of the waveform. Default is 512s. **verbose: `bool`** If True, print the waveform parameters and PSDs. Default is False. :Returns: hp_inner_hp: `numpy.ndarray` Noise weighted inner product of h+ with h+ .. !! processed by numpydoc !!